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Abstract—Control of robots with kinematic constraints like
loop-closure constraints or interactions with the environment
requires solving the underlying constrained dynamics equations
of motion. Several approaches have been proposed so far in the
literature to solve these constrained optimization problems, for
instance by either taking advantage in part of the sparsity of the
kinematic tree or by considering an explicit formulation of the
constraints in the problem resolution. Yet, not all the constraints
allow an explicit formulation and in general, approaches of the
state of the art suffer from singularity issues, especially in the
context of redundant or singular constraints. In this work, we
propose a unified approach to solve forward dynamics equations
involving constraints in an efficient, generic and robust manner.
We notably show how this new approach outperforms current
alternatives of the state of the art, providing new algorithmic
foundations for robot simulation and control.

I. MAIN CONTRIBUTIONS

As soon as a robot makes contacts with the world or is
endowed with loop closures in its design, its dynamics is
governed by the constrained equations of motion. From a
phenomenological point of view, these equations of motion
follow the so-called least-action principle, also known under
the name of the Maupertuis principle which dates back to
the 17th century. This principle states that the motion of
the system follows the closest possible acceleration to the
free-falling acceleration (in the sense of the kinetic metric)
which respects the constraints. In other words, solving the
constrained equations of motion boils down to solving a
constrained optimization problem where forces acts as the
Lagrange multipliers of the motion constraints.

A. A generic and numerically robust approach

Constrained dynamics. In particular, if we consider the
Lagrangian dynamics of an unconstrained poly-articulated
system following the usual notations:

M(q)v̇ + c(q,v) + g(q) = τ , (1)

when the system is subject to constraints, the least-action
principle reads:

min
v̇

1

2
‖v̇ − v̇free(q,v, τ )‖2M(q) (2a)

subject to Jc(q)v̇ + J̇c(q,v)v = 0, (2b)
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Fig. 1. Robotic systems may be subject to different types of constraints: point
contact constraints (quadrupeds), flat foot constraints (humanoids), closed
kinematic chains (parallel robots, here the 4-bar linkages of Cassie) or even
contact with the end effectors (any robot).

where Jc is the constraint Jacobian, ‖.‖M(q) is the kinetic
metric and v̇free is the free acceleration of the system, solution
of Eq. (1).

Lagrangian of the constrained dynamics. Problem (2) cor-
responds to an equality-constrained quadratic program. The
associated Lagrangian equation is:

L(v̇,λ) =
1

2
‖v̇ − v̇free‖2M + λt

(
Jcv̇ + J̇c(q,v)v

)
, (3)

where λ ∈ Rm corresponds to the Lagrange multipliers
associated to the constraints. Yet, as soon as the Jacobian is
rank-deficient (over-constrained, kinematic singularity, etc.) or
the constraint is infeasible, standard approaches are likely to
fail [5, 1, 6] or require further regularization terms [2].

Proximal reformulation. To overcome these limitations, we
propose instead to exploit a proximal reformulation [7] of
Eq. (3). This reads:

Lµ(v̇,λ,λe) = L(v̇,λ)− µ

2
‖λ− λe‖22, (4)

where µ is positive smoothing parameter and λe ∈ Rm is the
current estimate of the Lagrange multipliers. This smoothed
Lagrangian is now strictly convex in v̇ (because M is strictly
definite positive) and strictly concave in λ. Solving the saddle-
point problem associated with (4) leads to the primal/dual
system of equations:[

−µIm Jfc
J tfc M

]
︸ ︷︷ ︸

Kµ(q)

[
λ
v̇

]
=

[
−J̇cv − µλe
M v̇free

]
, (5)



where Kµ(q) is the so-called KKT matrix associated to
the saddle-point. From its structure, it appears that Kµ is
non-singular, even when Jc is rank deficient, enforcing the
well-possness of the formulation. By iteratively solving (5)
(updating the value λe with the optimal value of λ), it con-
verges to the original saddle-point point associated to (3) [7],
following the spirit of proximal algorithms. Notably, the rate
of convergence of this approach is linear in µ.

B. Exploiting at best the underlying problem sparsity

Sparse Cholesky factorization of M . In [4], Featherstone
introduces a sparse Cholesky decomposition of M which
exploits at best the sparsity pattern induced by the kinematic
tree. In particular, he advocates for an upper decomposition
of the form M = UDU t , and not for a (more classical)
lower Cholesky decomposition M = LDLt, with L and U
respectively unitary lower and upper triangular matrices, and
D positive diagonal matrix. Indeed and following the remarks
made in [4], shaped like that, L will not exhibit any specific
pattern resulting in a dense matrix.

Sparse Cholesky factorization of Kµ. Base on this prior
work, we introduce a generic algorithm to compute an upper
and sparse Cholesky of Kµ = UKµDKµU

t
Kµ

. We notably
show that this factorization is always well-posed (from a
numerical point of view) and admits a sparsity pattern similar
to the one exhibited by the constraint Jacobian Jc. Due to
space limitation, we skip the presentation of the algorithm in
favor of general results illustrating the overall contributions.

II. RESULTS

We implemented in C++ within the Pinocchio library [3]
both the sparse Cholesky factorization and the corresponding
constrained dynamics formulation. Comparison of our imple-
mentation with the state-of-the-art highlights the benefits of the
proposed proximal formulation of the constrained dynamics
and the exploitation of the branch-induced sparsity. We bench-
mark our implementation for multiple robots with different
dimensions, kinematic structures, and type of constraints.
Additionally, we show the results of our constrained dynamics
implementation to simulate the motion of different robots.

We use the time taken for solution of the constrained
dynamics to demonstrate the performance of our algorithm
against the state-of-the-art approach largely used in the com-
munity [5]: . In Fig. 2, we see significant reduction with
respect to the state-of-the-art in the timings for the solution
of constrained dynamics, which involves the computation
of the inverse of the KKT matrix Kµ. We benchmark our
algorithm against the forwardDynamics as proposed in [5]
and implemented within Pinocchio. Moreover, we use the
source-code generation tools (CppADCodegen) available in
Pinocchio to compile binary code for sparse decomposition of
all our (robot, constraints) combinations. We see significant
reduction in the timings for constrained dynamics because of
the sparse solutions, with our formulation reducing timings by
> 50% in all robots. In addition, we see a small improvement

0 3 6 9 12
Constraint Dimension

0

2

4

6

8

10

12

14

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

1.89 2.12 2.42
2.92

3.43
2.88

3.55
4.16

4.84
5.55

9.5

10.92
11.92

13.09
14.23CG Proposed

Proposed
Pinocchio

0 3 6 9 12
Constraint Dimension

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

3.02 3.26 3.63 4.1 4.74.13
4.93

5.59
6.54

7.23

13.5
14.98

16.36
17.87

19.23CG Proposed
Proposed
Pinocchio

a) Solo 14 DoF b) ANYmal 18 DoF

0 6 12 18 24
Constraint Dimension

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

8.94 9.85 11.2
13.59

16.78

10.33
13.22

16.22
19.84

24.19

32.46

37.83

43.77

49.55

56.66CG Proposed
Proposed
Pinocchio

0 6 12 18 24
Constraint Dimension

0

10

20

30

40

50

60

Co
m

pu
ta

tio
n 

Ti
m

e 
[in

 
s]

9.25 10.16 11.51
13.76

16.79

11.09
14.08

17.19
21.06

25.52

35.17

40.93

47.48

53.41

61.2CG Proposed
Proposed
Pinocchio

c) iCub 35 DoF d) Talos 38 DoF

Fig. 2. Proposed Contact Dynamics: The benchmarks show performance
of the proposed constrained dynamics algorithm against the state-of-the-art
Pinocchio [3] C++ library for different robotic platforms.

because of the binary source-code, which further optimizes
over redundant computations. However, this additional perfor-
mance benefit is capped because of the lack of vectorization
in binary compiled functions. In total, our sparse method and
source-code generation vastly outperform the state-of-the-art
implementation.

III. CONCLUSION

In this work, we have introduced a numerically robust and
sound approach to handle singularities issues occurring in
constrained dynamics. Additionally, we have proposed a sparse
Cholesky decomposition of the underlying KKT matrix, which
enables to exploit at best the sparsity induced by the kinematic
tree. This work naturally extends to further contexts (robot
control, robot simulation, etc.), that we left as future work.
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