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Abstract—This paper proposes a framework to optimize hu-
man wholebody motions w.r.t. one or more ergonomics scores.
We show that optimal motions for a score might degrade other
scores. Then, we use multi-objective optimization (MOO) to select
motions from a set of trade-off solutions.

Index Terms—Ergonomics, Digital Human Simulation, Whole-
body Motion Optimization, Multi-Objective Optimization

I. INTRODUCTION

Work-related musculoskeletal disorders (WMSDs) represent
a major health issue worldwide, with important costs for
companies and society [1]. One of its major risk factors is
represented by awkward body postures that cause biomechan-
ical demands that exceed the workers’ physical capacities [2].
In many situations, workers are able to choose among a variety
of postural strategies to execute a task. Yet, their natural choice
does not always match the best strategy concerning long-term
health. Recommending ergonomic postures for the specific
task that workers have to perform is, therefore, a promising
avenue to reduce the prevalence of WMSDs.

Posture recommendation requires prior identification of the
best postural strategies for a given individual under a given
activity’s constraints [3], [4]. This question is also pushed
forward by the growing interest in collaborative robotic as-
sistance. Collaborative robots can be used to guide workers
toward a more ergonomic posture via the positioning of their
end-effector [5]–[7], but such assistance also requires the
knowledge of the user’s optimal posture.

Here, we propose a framework to optimize entire wholebody
trajectories with respect to one or more ergonomics scores
related to WMSDs, while under several constraints related to
the human movement and the work activity itself (Fig. 1).
Moreover, the framework is utilized to analyze how optimal
wholebody trajectories are affected by work activities and
several ergonomics scores.

II. METHODS

A 43 DoFs digital human model (DHM) is simulated in
a physics engine and controlled by a multi-task quadratic
programming (QP) solver [8]. The QP controller takes Carte-
sian reference trajectories as input, and outputs desired joint
velocities for the DHM. Some work activities may require
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Fig. 1. Ergonomics human motion optimization framework. The entire motion
is encoded into motion primitives that can be readily optimized with respect
to multiple ergonomics scores.

fixed reference trajectories, as with feet in double support, or
policies, as in a manipulation activity that requires a fixed hand
orientation regardless of the hand position. Therefore, in our
framework, not all reference trajectories need to be optimized.
Additionally, the user may also deliberately choose to optimize
only a few references and, due to the QP formulation, the
trajectories of the other links will also be indirectly modulated.

The optimizable reference trajectories are parameterized by
probabilistic movement primitives (ProMPs) [9]. Each trajec-
tory of a given task coordinate is encoded as a weighted sum
of basis functions, with a weight vector, wtask. For a compact
representation of all ProMP task trajectories all weights can
be stacked into a single vector: w = [w1 . . .wntasks

].
The DHM movement is evaluated w.r.t. the RMS value of

a diverse set of ergonomics scores, εobj , (table I) at each time
step. Given an episode k in the optimization loop (Fig. 1), a
point wk is considered feasible if, and only if, the wholebody
trajectories y(wk) are always within the DHM workspace, the
DHM does not fall, and the activity is successfully executed.
Therefore, this trajectory optimization is a derivative-free
problem with black-box non-linear constraints.

Given the restrictive constraints of the problem, we boot-
strap the optimization process with initial feasible solutions
taken from human motion demonstrations. First, the motion is
optimized w.r.t. each one of the ergonomics scores in Tab. I
individually using a single-objective optimizer, COBYLA.
Then, the motion is optimized w.r.t. a set of antagonistic scores
at the same time using a multi-objective optimizer, NSGA-II.

Work Activities: The human demonstrations are taken from
2 different work activities (A and B). Activity A is a reaching
movement, in which the human demonstrator pick-and-places



TABLE I
INSTANT ERGONOMICS EVALUATION SCORES

Description Score εobj(t)
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an object from a shelf at the shoulder level. And activity B
is a lifting movement, in which the demonstrator lifts a box
from the ground up to the subject’s waist level.

III. RESULTS AND DISCUSSION

The single-objective optimizations w.r.t. each ergonomics
score lead to solutions with improved respective initial er-
gonomics score for each work activity, as depicted by Fig. 2.
The back flexion score improved 99.37 % (A), and 93.42%
(B); the RULA-C score improved 4.52% (A), and 30.02%
(B); the normalized wholebody effort score improved 12.92%
(A), and 87.67% (B); the torques shoulder score improved
60.36% (A), and 64.97% (B); and the torques lumbar score
improved 77.24% (A), and 67.32% (B). Fig. 2 also indicates
that optimal solutions for a given score could degrade other
scores in comparison to the initial demonstration set. In
activity A, minimizing the torque shoulder score also increases
the wholebody effort, and back flexion, while in activity B
minimizing back flexion increases the torque shoulder score.

The multi-objective optimization (MOO) handles these an-
tagonistic scores simultaneously, yielding a set of motions with
ergonomics scores trade-offs, a Pareto-optimal front. In the
simulation experiments, we observed a large variety of motions
and ergonomics scores in the Pareto front, which could be used
as a guide to decide on which Pareto optimal motion to select.
E.g., in activity B, a user could prefer motions that require
more effort from the shoulder rather than from the back.

IV. CONCLUSIONS

Our framework optimizes wholebody motion through mo-
tion parameterization, and a DHM in a physics engine. We
have shown that certain ergonomics scores can be conflicting,
therefore, single-score optimization may not be sufficient to
guarantee motions that reduce the overall risks of WMSDs.
The proposed MOO is useful to select movements that are si-
multaneously ergonomic for several scores. One could use our
framework to pick trajectories from a Pareto front, and input
them as a reference to a human-robot interaction controller.

REFERENCES

[1] E. Schneider, S. Copsey, and X. Irastorza, Occupational Safety and Health
in Figures: Work-related Musculoskeletal Disorders in the EU-Facts and
Figures. Office for Official Publications of the European Communities,
2010.

[2] L. Punnett and D. H. Wegman, “Work-related musculoskeletal disorders:
the epidemiologic evidence and the debate,” Journal of electromyography
and kinesiology, 2004.

Back
Flexion

Rula C.

Normalized
Whole-Body Effort

Torques
Shoulder

Torques
Lumbar

0.2

0.4

0.6

0.8

1.0

Activity A 
Ergonomic Evaluations

Initial

Opt. Rula-C

Opt. Back Flexion

Opt. Norm. Whole-Body Effort

Opt. Torques Shoulder

Opt. Torques Lumbar

Back
Flexion

Rula C.

Normalized
Whole-Body Effort

Torques
Shoulder

Torques
Lumbar

0.2

0.4

0.6

0.8

1.0

Activity B
Ergonomic Evaluations

Initial

Rula C

Opt. Back Flexion.

Opt. Norm. Whole-Body Effort

Opt. Torques Shoulder

Opt. Torques Lumbar

Fig. 2. Effect of single-objective optimization on different ergonomic scores
for Activity A and Activity B. The costs are normalized by the maximum
observed value for each score.

[3] P. Maurice, V. Padois, Y. Measson, and P. Bidaud, “Assessing and
improving human movements using sensitivity analysis and digital human
simulation,” International Journal of Computer Integrated Manufactur-
ing, 2019.
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