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Human Posture Prediction during Physical Human-Robot Interaction
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Abstract—In this paper we propose a method to predict, in
probabilistic terms, the human postures of an individual for a
given robot trajectory executed in a collaborative scenario. We
formalize the problem as the prediction of the human joints
velocity given the current posture and robot end-effector velocity.

The key idea of our approach is to learn the distribution of
the null space of the Jacobian and the weights of the weighted
pseudo-inverse from demonstrated human movements.

I. INTRODUCTION

Cobots (i.e., industrial manipulators for collaboration) and
exoskeletons are designed to physically interact with humans
and to assist their movement in accomplishing one or more
tasks [1]. The general objective is to reduce the human
physical effort and improve his/her ergonomics, which requires
the evaluation of several ergonomics criteria, most often de-
termined by the human posture [2].

An open problem, when a robot wants to assist the human, is
that humans are not entirely “controllable”: humans are highly
redundant systems that are over-actuated for many manipula-
tion tasks. Individual preferences of movement and musculo-
skeletal problems might add to the intrinsic variability of the
human movement, thus increasing the variance of all possible
postures in response to a robot action. For these reasons, when
the human is physically coupled with the robot to accomplish
a task, it is not possible to know with certainty how a human
will move when the robot imposes a trajectory, which makes
it challenging to select the best trajectories for the robot in
collaborative tasks. In this context, data-driven probabilistic
models of human movements, learned from demonstrations,
can provide interesting insights into human preferences while
capturing the variance of demonstrated movements. A limit
of this kind of solutions is that a small error in the joint
estimation can cause a large error in the estimation of the
end-effector position (i.e., the human hand), which makes
the prediction kinematically inconsistent. This error poses a
nontrivial problem, especially when the human is physically
coupled to the robot because it can compromise the quality of
the collaboration.

For a known end-effector trajectory and an initial human
posture, we want to determine the probability distribution of
the human postures along the trajectory of the end-effector.
Our main idea is to learn, from the human demonstrations, a
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Fig. 1. The human posture is influenced by the robot’s trajectory during
physical interaction, but the human may adopt different postures during each
task execution. In this paper we want the robot to predict the human posture
given a known Cartesian trajectory of its end-effector and prior observations
of the task executed by the human. The human posture is measured online
by a wearable Xsens MVN suit.

model in the null space of the DHM Jacobian, which describes
a set of human configurations that lead to the same end-
effector position. The problem can be formalized as computing
the conditional probability:

p(q̇|q, ẋ) s.t. ẋ = J(q)q̇ , (1)

where the second term is the kinematic constraint which
determines the set of possible solutions.

II. METHOD

We assume that the human/DHM follows this classic control
law from robotics ([3], [4]):

q̇ = J†
W (q)ẋ+ (I − J†

W (q)J(q))z(q) (2)

where z(q) is a vector of null-space velocities and W are the
weights of the weighted pseudo-inverse J†

W . The EE velocity
ẋ is known. Our objective is to learn z(q) and W from data.
In this way, the solutions we find must always satisfy the
kinematic constraint: ẋ = J(q)q̇. In our works we proposed
to learn a distribution over z(q) conditioned by the current
joint state and the EE velocity using GPs and a gradient-free
stochastic optimizer (BIPOP-CMA-ES [5]) to select the best
parameters W .

Once the model is trained, it can be used to predict the hu-
man joints’ trajectories given the current configuration qt and
the expected EE trajectory executed by the robot {xd

1, . . . , x
d
T }

by applying sampling procedure. In this way we get a Monte-
Carlo estimation of the distribution over the human joint
trajectories according to the learned model [6].
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Fig. 2. Comparison of methods for joint velocity prediction: (a) R-MSE
between the mean of the predicted joint velocity and real value (b) R-MSE
over the EE velocity. The methods were evaluated on three experiments: (red)
simulated 5R planar robot controlled by a biased IK function; (blue) human
posture prediction during a human-robot collaboration task; (green) human
posture prediction during a human-robot collaboration task using different
tasks in the training-set and in the test-set).

III. EXPERIMENTS

To evaluate our method (denoted as MI-NsGP), we compare
it experimentally to alternative approaches that use only a
subsets of our elements (i.e., we make several ablation exper-
iments). Moreover we compared our method with a state-of-
the-art method for predicting joint trajectory while satisfying
a task space motion primitive [7].

All methods were evaluated on three experiments. The first
(5R) consists of predicting the joint state of a simulated 5R
planar robot controlled by a biased IK function. The second
(EXP1) and third (EXP2) consist in predicting the human
posture (i.e., joints) during a co-manipulation trajectory, where
a human is physically attached to the Franka robot to do a task.
Results: Overall, our method (MI-NsGP) leads to signifi-
cantly better likelihood values than all the control approaches.
Moreover its performance is comparable with the state-of-the-
art method for human posture prediction (ProMP). Regarding
the ability to satisfy the kinematic constraint, we observed
that model based methods (W-IK, Sb-M, NsGP, MI-NsGP)
always have bigger likelihood and smaller root-mean-square
error with respect to GP regression. Some considerations are
possible on the results obtained. In fact, the joints which move
less (e.g. lumbar joints) have a smaller W with respect to those
which are more involved in the execution of the movement
(e.g. shoulder and elbow). In the prediction phase we evaluated
the calculated trajectories using four different ergonomics
scores from the state of the art in human ergonomics [8]:
RULA, REBA, RULA continuous and cumulative back angle
(Fig. 3b). The purpose is to show that the probabilistic IK also
impacts the prediction of ergonomics scores, which is critical
information for a collaborative robot.

IV. CONCLUSIONS

We presented a method for predicting human posture in a
Human-Robot Collaboration scenario where the human hand
motion is constrained by the robot’s end-effector. We propose
a two-phase method: in the first phase, we leverage a dataset
of human demonstrations to learn a distribution over the null-
space of the human Jacobian using a Gaussian Process; in the

(a)
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Fig. 3. (a) The DHM in Simulation, showing the variance of the solutions
calculated via Monte-Carlo integration. (b) Ergonomic scores computed on
different sampled trajectories: RULA, REBA, RULA continuous, cumulative
back angle.

second phase we optimize the weights of the weighted pseudo-
inverse of the Jacobian. Our method computes a probabilistic
estimation of the future postures that satisfy the kinematic
constraints imposed by the physical link between the human
and the robot, and at the same time is coherent with the human
preferences of movement.

In the future, we want to consider the full human model
in the posture prediction and integrate the algorithm into our
framework for ergonomics control, which aims to optimize
a collaborative robot’s motions to maximize the comfort and
the ergonomics of the human collaborator. A byproduct of our
method is the probabilistic computation of ergonomics scores
for a given robot’s EE trajectory, which is a critical element for
planning the robot’s trajectories. Further, we want to remove
the leader/follower hypothesis, and address the case where the
leadership role may vary over time.
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and O. Khatib, “Progress and prospects of the human–robot collabora-
tion,” Autonomous Robots, vol. 42, no. 5, pp. 957–975, 2018.
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