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I. INTRODUCTION
Work-related musculoskeletal disorders (WMSDs) are one

of the first cause of occupational diseases in many countries
worldwide, representing a major health issue and an important
cost for companies and society [1]. Force exertion, awkward
postures, and repetitiveness of gestures are among the major
biomechanical risk factors for WMSDs. By providing various
types of physical assistance to address one or several of those
factors, collaborative robotics has the potential to help reduce the
prevalence of WMSDs [2]. For instance, weight compensation or
strength enhancement are commonly envisioned. Recent studies
also proposed to address the postural factor, by using collabo-
rative robots to guide the user toward a task-dependent optimal
posture [3], [4]. But those studies consider a single optimal
posture, whereas researches in ergonomics suggest that motor
variability in task execution –i.e., varying the motor strategy
used to perform a task– might be beneficial to reduce the risk
of developing WMSDs [5]. Along this line, Lorenzini et al.
developed an adaptive controller that modifies the robot’s pose
depending on the current level of fatigue in the different human
joints: the load is thereby redistributed to less fatigued joints,
allowing recovery of fatigued joints [6].

While definitely a step forward, such purely reactive approach
does not guarantee that the resulting behavior is optimal in the
long term. It might, for instance, result in sudden changes in
the robot’s motion that surprise the user, possibly increasing the
cognitive load and/or degrading productivity. In addition, most
approaches targeting postural optimization consider that the user
will adopt the optimal posture computed by the robot. Setting
the robot’s end-effector pose does, however, not fully constrain
the human posture because of the kinematic redundancy of the
human body. A same action of the robot might trigger different
postural reactions from the user (associated with different levels
of ergonomics risk), depending on the individual (user profile), as
well as on the user’s current state (e.g., fatigue, expertise) which
often cannot be directly measured but only inferred [7], [8].

The present work aims at addressing the above-mentioned
questions. Specifically, we propose a framework to plan a policy
of a collaborative robot in order to reduce the user’s physical
fatigue in the long term, while taking into account the stochastic
nature of the user’s postural reaction.

II. METHODS
The problem addressed involves several sources of uncertain-

ties since i) the postural reaction of the human is stochastic, and
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Fig. 1: Workflow of the human-robot interaction process
during the execution phase, according to the proposed model.
The robot decision follows the precomputed policy π .

ii) the fatigue of the human is a hidden variable (to measure
an exact level of fatigue, one would need heavy instrumentation
and/or a biophysical model with many user-specific parameters to
identify). We therefore propose to use a framework for decision-
making under uncertainty and under partial observability, namely
the Partially Observable Markov Decision Process (POMDP)
framework, to model the problem [9]. In this context, the problem
is described by a tuple 〈S,A,T,R,Ω,O,b0〉 where:

• S is the set of system states containing the human fatigue
f = ( f1, . . . , fN)

T where fi corresponds to the fatigue in the
i-th joint or group of joints, and the previous human postural
reaction;

• A is the set of robot actions, here the end-effector poses;
• T : S×A→ P(S) is the transition function describing the

probabilistic evolution of the system’s state, which includes
the probabilistic postural reaction of the human to the
robot’s action and the associated effect on the human fa-
tigue;

• Ω is the space of observations formed by the set of possible
human postural reactions;

• O : S×A→ P(Ω) is the observation function, i.e., a distri-
bution over the postural reactions perceived by the robot,
given the current state s (which includes the human’s actual
postural reaction) and the robot action a;

• R : S×A×S→ R is the reward function which depends on
the human fatigue;

• b0 = P(S0) is the initial belief about the the system’s state,
here the probability distribution over the initial fatigue of
the human.

Let b ∈ B be the belief state, i.e., the probability distribution over
the true state of the system, given the past actions a1:t and past
observations o1:t , such that b(s) = P(St = s|a1:t ,o1:t). Solving
this problem consists in computing an optimal policy π : B→ A
associating to each belief state b ∈ B the action a to perform
in order to maximize the average discounted cumulated reward
E[∑γ trt ] during execution (rt and γ being respectively the reward
of step t and the discount factor). Fig. 1 depicts an example step
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Fig. 2: Workflow of the process used to compute the tran-
sition function T of the POMDP model, that describes the
probabilistic evolution of the human postural reaction and
associated discrete fatigue.

of the proposed model.
In order to assign numerical values to the different functions

of the model, we rely on a digital human simulation in a physics
engine to simulate the postural reactions of the human and
evaluate the associated fatigue. The human is modeled as a tree-
like kinematic chain, and its whole-body motion is computed
by solving a quadratic programming (QP) problem which main
objective is to bring the human hand to the robot’s end-effector
pose [10]. A diversity of postural reactions is simulated by chang-
ing the relative weights of lower-priority postural objectives in
the QP controller, thereby penalizing more or less the motion
of certain joints. Each reaction is thus represented by a vector
w = (w1, . . . ,wN) where wi is the weight of the postural objective
associated with the i-th joint (or group of joints).

The digital human simulation enables to compute the time-
series of human joint torques for each pair of robot action and
human postural reaction. We then use the fatigue/recovery model
proposed by Ma et al. to compute the evolution of fatigue in each
joint [11]. The resulting fatigue is however a continuous variable,
which cannot be handled by the POMDP formalism because it
would lead to an infinite set of states. We therefore discretize the
fatigue in each joint. For each pair of robot action and human
reaction, the probability P(Ft = f |Ft−1 = f ′) –where f and f ′

are discrete fatigue states– is computed as the projection of each
fatigue interval at time t in each fatigue interval at time t +1, by
running a large number of simulations with randomly selected
(continuous) values as fatigue start state. The corresponding
workflow is described in Fig. 2.

III. EXPERIMENTS
In order to demonstrate our framework, we consider a toy

example in which the robot brings a piece to the user who
works on it with a hand-held tool. The robot’s set of actions
corresponds to a set of possible poses for the manipulated piece,
which are selected a priori within the robot’s workspace to elicit
significantly different motions from the human. For each action
of the robot, two postural reactions are considered for the human:
performing the task with the right hand or with the left hand.
The human is modeled as aware of his/her fatigue, such that the
probability of selecting a weight wi for the postural objective of
joint i depends on the real fatigue level in the joint (handedness

is not considered in this work). We use the SARSOP solver to
compute the optimal policy [12]. The computation and analysis
of the results are work in progress.

IV. CONCLUSION
In this work, we proposed to use a decision-making under

uncertainty framework to compute the policy of a collaborative
robot that minimizes the fatigue of the user, while taking into
account the fact that the human can adopt different postural
reactions depending on his/her fatigue state which is hidden for
the robot. In a future work, we will benchmark our framework
on more complex situations where the human can adopt a larger
variety of postural reactions, and validate the computed policy
experimentally. Importantly, we centered this work on fatigue,
but the proposed framework enables to account for many more
variables that would allow to compute even more user-specific
policies. For instance, the fatigue time constant of the model
by Ma et al. could be individualized to account for people that
fatigue faster. Expertise with respect to fatigue perception and
management could also be included and affect the choice of
postural reaction. Finally, the reward function could include ad-
ditional costs, linked for instance to the quality and/or rapidity of
task execution, or to the cognitive load caused by a change in the
robot behavior between two consecutive cycles. Such additions,
however, require to deal with heterogeneous cost functions.
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